Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510545

RESUMO

Background: The study aimed to examine alterations and imbalances in hamstring muscle contractile properties among young football players throughout their competitive season, and to understand how these changes might contribute to the risk of muscle injuries. Hamstring injuries are particularly common in football, yet the underlying causes and effective prevention methods remain unclear. Methods: The research involved 74 young footballers who were assessed before the season (pre-test) and after 12 weeks of training (post-test). To evaluate changes in hamstring muscle contractile properties, specifically the left and right biceps femoris (BF) and semitendinosus (ST), tensiomyography (TMG) parameters were utilized. Results: In comparison to the BF muscle, significant differences in time delay (Td) between the left and right sides in the post-test (p = 0.0193), and maximal displacement (Dm) between the left and right sides at the pre-test (p = 0.0395). However, significant differences in Dm were observed only in the left ST muscle between the pre- and post-tests (p = 0.0081). Regarding lateral symmetry, BF registered measurements of 79.7 ± 13.43 (pre-test) and 77.4 ± 14.82 (post-test), whereas ST showed measurements of 87.0 ± 9.79 (pre-test) and 87.5 ± 9.60 (post-test). Conclusions: These assessments provided TMG reference data for hamstring muscles in young footballers, both before the season and after 12 weeks of in-season training. The observed changes in the contractile properties and decrease in lateral symmetry of the BF in both tests suggest an increased risk of injury.


Assuntos
Músculos Isquiossurais , Futebol , Contração Muscular/fisiologia , Músculo Esquelético/lesões , Estações do Ano , Futebol/lesões
2.
J Int Soc Sports Nutr ; 21(1): 2306295, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38239059

RESUMO

BACKGROUND: This study aimed to determine the optimal time point, either 30 or 60 minutes, at which muscle reactivity to caffeine administration is highest. Unlike previous studies that focused on the nervous system response, we employed tensiomyography (TMG) to directly assess the effects of caffeine on muscle fibers. METHODS: TMG measurements were performed on the gastrocnemius medialis muscle of 42 male athletes who regularly consumed caffeine. Participants received a dose of 6 mg/kg body weight and TMG measurements were taken prior to caffeine intake, as well as 30 and 60 minutes afterward. RESULTS: Analysis of TMG parameters including time to contraction (Tc), time delay (Td), and maximal displacement (Dm) revealed that muscles exhibited faster contractions and greater stiffness at the 30-minute mark compared to both pre-caffeine intake and the 60-minute time point. Time exerted a significant main effect on Tc (F(2, 246) = 12.09, p < .001, ή2p = 0.09), Td (F(2, 246) = 3.39, p = .035, ή2p = 0.03), and Dm (F(2, 246) = 6.83, p = .001, ή2p = 0.05), while no significant effect of body side was observed. CONCLUSIONS: The findings indicate that muscle contraction time (Tc) and delay time (Td) are influenced by the time elapsed since caffeine ingestion, with the fastest responses occurring after 30 minutes. Additionally, a systemic effect of caffeine was observed, as there were no discernible differences in measurements between the two sides of the body. TMG proves to be an effective noninvasive method for assessing muscle responses following caffeine administration.


Assuntos
Cafeína , Contração Muscular , Humanos , Masculino , Cafeína/farmacologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas
3.
J Electromyogr Kinesiol ; 73: 102824, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696055

RESUMO

The habitual use of resistance exercises involving concentric and eccentric contractions can increase muscle strength, speed and endurance. However, current knowledge has limited potential to fully understand the application of such resistance training and the muscle changes that occur to differentiate these two types of training. The aim of this study was to compare the effects of concentric contraction (CON) and eccentric contraction (ECC) during an acute bout of resistance training on the hamstring contractile properties. A group of 20 female recreational athletes were divided into two equal groups, CON training and ECC training. The contractile properties of the muscles on both sides of the body were assessed using tensiomyography (TMG): biceps femoris (BF) and semitendinosus (ST). The muscles were assessed twice, before and after 10 maximal repetitions of either concentric or eccentric isotonic contractions. The results indicate a greater change in TMG parameters with ECC training, with p < 0.001 (Td and Tc). An acute bout of resistance training induces changes in the muscle hamstrings contractile properties in both CON and ECC training. Eccentric training causes greater changes than concentric training, shortening contraction time (Td, Tc), increase radial displacement velocity (Vrd) and affecting changes in muscle belly displacement (Dm), so may be more effective in training.


Assuntos
Treinamento de Força , Humanos , Feminino , Treinamento de Força/métodos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Força Muscular/fisiologia , Terapia por Exercício
4.
PLoS One ; 16(12): e0261265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34919582

RESUMO

BACKGROUND: The purpose of this study was to identify the biomedical signals of short-track athletes by evaluating the effects of monthly strength training on changes in their neuromuscular profile, strength, and power parameters of the lower limb muscles. Muscle asymmetry, which can cause a risk of injury, was also evaluated. METHODS AND RESULTS: This study involved female athletes, age 18.8 ± 2.7 years, with a height of 162 ± 2.4 cm, and weight of 55.9 ± 3.9 kg. Before and after the monthly preparatory period prior to the season, strength measurements were assessed through the Swift SpeedMat platform, and reactivity of the lower limb muscles was assessed with tensiomyography (TMG). The athletes were also tested before and after the recovery training period. In the test after strength training, all average countermovement jump (CMJ) results improved. Flight time showed an increase with a moderate to large effect, using both legs (5.21%). Among the TMG parameters, time contraction (Tc) changed globally with a decrease (-5.20%). Changes in the results of the test after recovery training were most often not significant. CONCLUSION: A monthly period of strength training changes the neuromuscular profile of short-track female athletes, with no significant differences between the right and left lower limbs.


Assuntos
Atletas/estatística & dados numéricos , Desempenho Atlético/fisiologia , Perna (Membro)/fisiopatologia , Força Muscular , Músculo Esquelético/fisiopatologia , Junção Neuromuscular/fisiopatologia , Treinamento de Força/métodos , Adolescente , Feminino , Humanos , Monitoração Neuromuscular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...